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Abstract

Guided by the three-dimensional theory of coupled thermoelasticity with second sound, a system of shear-deformable
shell equations is consistently derived in invariant, differential and variational forms for the high-frequency vibrations of
temperature-dependent materials. The first part of the paper is concerned with a unified variational principle describing
the fundamental equations of thermoelasticity. The differential type of variational principle is presented by expressing
Hamilton’s principle for the thermal part of a thermoelastic region and then combining it with its mechanical part. In the
second part, the hierarchic system of non-isothermal shell equations is systematically established by use of the variational
principle together with Mindlin’s kinematic hypothesis for shells. The system of two-dimensional approximate equations
which may take account of all the significant mechanical and thermal effects, including the temperature dependency of
material, governs the extensional, thickness-shear, flexural and torsional as well as coupled vibrations of shells of uni-
form thickness. Lastly, in the third part, emphasis is placed on certain cases involving special material, geometry and
kinematics. Besides, a theorem is devised so as to enumerate the initial and boundary conditions sufficient for the
uniqueness in solutions of the system of non-isothermal shell equations. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Usually, temperature-dependent and/or time-dependent and even moisture-dependent materials are of
widespread use in structural elements of diverse branches of today’s advanced technology. Hence, for this
type of elements which are essentially subjected to thermal or combined thermo-mechanical loadings over a
wide range of frequencies, the lower-order thermoelastic equations are a subject of considerably increasing
importance. To establish the thermoelastic equations, the conventional uncoupled theories of thermo-
elasticity are justified in most cases by their very good corroboration of several experimental investigations,
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Nomenclature

0 geodesic normal coordinates

1 components of the stress tensor

fi components of the body force vector

P mass density

u', a'(=i') components of the displacement and acceleration vectors
n components of the heat flux vector

Ya heat source per unit mass

0y, ©® reference temperature, temperature increment
n entropy density

e components of the linear strain tensor

e components of the thermal field vector

G, F thermoelastic potential, dissipation function
70 relaxation parameter

K components of the conductivity tensor

JY. ¢4 material constants

o thermal expansion coefficient

24 thickness of thermoelastic shell

however they become inadequate in certain cases indicated, for instance, by Boley and Weiner (1960).
Thus, the fusion of both the fields of elasticity and heat conduction, that is, the coupled theory of dy-
namic thermoelasticity is compulsory in investigating the thermomechanical response of heated elements in
which the thermoelastic dissipation is of primary interest. This classical coupled theory which predicts the
paradox of instantaneous propagation for thermal signals seems to be unrealistic from the physical point of
view. Accordingly, to eliminate the paradox of infinite heat speed, the coupled theory is modified by in-
troducing a thermal relaxation parameter into Fourier’s equation of heat conduction and the so-called
theories of thermoelasticity with second sound or hyperbolic thermoelasticity were proposed. The modified
equation of heat conduction or Cattaneo’s (1958) equation which can be traced to Maxwell (1867) and also
Jeffrey’s type equation of heat conduction suggested by Joseph and Preziosi (1989, 1990) assure, unlike their
classical counterparts, a finite speed for heat propagation. Noteworthy is that the hyperbolic thermoelas-
ticity theories are in need of further modification due to their some unphysical results, as was shown by
Solomon et al. (1985). ! The effect of thermal relaxation is significant in certain cases (Chandrasekharaiah,
1986, 1998; Li, 1992; Hetnarski and Ignaczak, 2000), though it is very small and negligible in many en-
gineering applications. By applying the coupled theories of thermoelasticity, a large number of investiga-
tions was performed so as to predict the physical behavior of heated structural elements and were reported
by the state-of-the-art accounts (Hetnarski, 1986-1989; Lukasiewicz, 1989; Noda, 1986, 1991; Tauchert,
1987, 1991; Noor and Burton, 1992; Thornton, 1993, 1996, 1997; Noor et al., 1996). The accounts were
concentrated almost entirely, omitting the effect of thermal relaxation, on specific cases dealing with either
the static behavior or the dynamic behavior of heated structural elements at low-frequencies, and in par-
ticular, the unified thermoelastic equations, including the effect of thermal relaxation, seem to be un-
available for the high-frequency vibrations of heat-sensitive shells or plates.

Looking back on the fundamental equations of a non-polar, non-local and non-relativistic elastic me-
dium subjected to thermo-mechanical loading, they may be grouped as the divergence, gradient and

' We are grateful to the reviewer who brought this reference to our attention.
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constitutive equations for the mechanical and thermal fields with the appropriate boundary and initial
conditions which are supplementary to them. The divergence equations which are originally established in
an integral form and the rest of the fundamental equations are almost always expressed in differential form.
However, some or all the fundamental equations may be alternatively stated in variational form through
the Euler-Lagrange equations of certain integral or differential types of variational principles with their
well-known features. A number of variational principles in thermoelasticity (Biot, 1956, 1984; Herrmann,
1963; Nickell and Sackman, 1968; Dhaliwal and Sherief, 1980; Batra, 1989; Li, 1992) are contrived intu-
tively or by a trial-and-error method, and also, either by a purely mathematical method (Gurtin, 1972) or
through a general principle of physics (Altay and Dokmeci, 1996; Argyris and Tenek, 1997). Carlson (1972)
and Keramides (1983) reported a comprehensive review of variational principles in thermoelasticity, as did
recently Altay and Dokmeci (1996). By introducing a thermal field vector for the gradient of temperature
increment, a new concept analogous to the electric field vector for the gradient of electric potential in pi-
ezoelectricity, Altay and Dokmeci (1996) derived certain variational principles by extending the principle of
virtual work for the coupled discontinuous thermal and mechanical fields. Likewise, a Hamiltonian type-
variational principle is now presented for the coupled theory of thermoelasticity with second sound.

At low frequencies in which the wavelength is large as compared with the thickness, the vibrations of
shells/plates are most commonly encountered in conventional engineering applications, whereas the high
frequency vibrations where the wavelength is of the order of magnitude or smaller than the thickness are
finding applications in advanced technology (Thornton, 1996, 1997). Investigations are abundant for the
low frequency vibrations of shells/plates with various shapes and materials (Leissa, 1973; Noor, 1990) and
are rather scanty for the high-frequency vibrations of shells/plates (Junger and Feit, 1972; Tovstik, 1992;
Ivanova, 1998; Altay and Dokmeci, 1998). A unified treatment of high frequency vibrations and waves in
solids was reported by Truell and Elbaum (1962), including non-linear and anharmonic effects, thermo-
elastic and electrical effects and some experimental results. As for the vibrations of structures, Ekstein
(1945) seems to be the first to analyze the high frequency vibrations of a thin crystal plate by a procedure
based on the series expansion methods of Cauchy (1829) and Poisson (1829). By the same procedure to-
gether with the integral method of Kirchhoff (1850), Mindlin (1955) studied various types of high-frequency
vibrations of elastic plates. Using Mindlin’s celebrated method of reduction (Mindlin, 1968, 1989), a
number of authors (Tasi and Herrmann, 1964; Tiersten, 1969; Mindlin, 1972, 1989; Nikodem and Lee,
1974; Yong et al., 1993; Dokmeci, 1972, 1974; Altay and Dokmeci, 1996, 1997, and references cited therein)
investigated the high-frequency vibrations of beams, plates and shells. On the other hand, based on the
variational asymptotic method (Berdichevsky, 1979; Berdichevsky and Lee, 1980) examined the high-
frequency response of shells, as did most recently Chau (1997) and Altay and Dokmeci (1998). Besides, for
the vibrations of shells, all the available results, computational and experimental, were collected by Leissa
(1973). Along this line, many significant equations and results were provided by Soedel (1994) and Pilkey
(1994) and a comprehensive review, including background information, was recently reported by Steele
et al. (19995).

Yawing now to a severe thermal environment in which the properties of some materials may largely
change with increasing temperature (Touloukian, 1970, 1973a,b, 1975), the thermomechanical response of
structural elements was reported to be significantly effected by the temperature-dependent properties of
materials (Noda (1986, 1991); Thornton (1992, 1993, 1996, 1997); and Noor et al. (1996) for a review of the
subject). The analysis of thermomechanical response is becoming increasingly important whenever large
ranges of temperature are involved. Nevertheless, only a few specific cases which are numerically treated are
available at low-frequencies, due to an increasing number of elasticities for temperature-dependent prop-
erties of materials. Realizing the importance of elevated temperature but not elucidating fully the role of
thermal effect, Bolotin (1963) derived the basic equations of shells and plates subjected to a linear tem-
perature distribution. The thermal stresses were analyzed for an orthotropic cylinder (Tauchert, 1976a,b;
Kalam, 1981), a thick cylindrical shell and tube (Jekot, 1986), a hollow sphere (Tauchert, 1976b; Kamiya,



2740 G.A. Altay, M.C. Dokmeci | International Journal of Solids and Structures 38 (2001) 2737-2768

1980), a hollow cylinder (Kamiya and Kameyama, 1981) and a conical shell (Jianping and Harik, 1991),
having temperature-dependent material. A description of thermally induced vibrations in structures, in-
cluding a review of the past research was given (Thornton and Foster, 1992; Thornton, 1997). In view of the
aforementioned reviews, the equations with some applications for thermally induced vibrations in plates
were reported (Tomar and Gupta, 1984; Sumi and Sugano, 1997; Altay and Dokmeci, 1997), whereas those
in shells seems to be unavailable.

Inspired by the work of Mindlin (1972), the aim of this paper is threefold: (i) to deduce a unified
variational principle from Hamilton’s principle by expressing it for the thermal part of a thermoelastic
region and then combining it with its mechanical part so as to describe the fundamental equations of a
coupled theory of thermoelasticiy with second sound; by use of the variational principle (ii) to establish a
hierarchic system of two-dimensional, shear-deformable thermoelastic shell equations in invariant, varia-
tional and differential forms for the high-frequency vibrations of temperature-dependent materials; and
then (iii) to deal with some special cases in the hierarchic system of thermoelastic shell equations and also
with the initial and boundary conditions sufficient for the uniqueness in solutions of a linearized version of
the equations of thermoelastic shell of uniform thickness.

Looking back on the appropriate notation to be used in the development of invariant shell equations in
the remaining of this section, the fundamental equations of a coupled theory of thermoelasticity with
second sound are summarized in differential form in the next section. To express the fundamental equations
of thermoelasticity in variational form, Hamilton’s principle is stated for a regular thermoelastic region
with no singularities of any type and then, with the aid of the thermal field vector, a two-field variational
principle is derived which leads to the thermal divergence equations and the associated natural boundary
conditions for the thermoelastic region. This variational principle is combined with a variational principle
for the mechanical part and hence a differential type of unified variational principle is established which
yields the fundamental equations of thermoelasticity as its Euler-Lagrange equations. Section 3 is con-
cerned with certain preliminaries and results from the differential geometry of a surface, for ease of quick
reference, and with the geometry of a thermoelastic shell of uniform thickness. Besides, the kinematics of
thermoelastic shell is described for the high-frequency vibrations and also, the distributions of strain and
thermal field are obtained. In the next three sections, emphasis is placed on the derivation of a hierarchic
system of two-dimensional, shear-deformable shell equations in invariant differential and invariant varia-
tional forms. Section 4 contains the resultants of mechanical and thermal field quantities and the associated
constitutive relations for the thermoelastic shell having temperature-dependent materials. By use of the
unified variational principle together with the kinematic hypothesis, the hierarchic system of shell equations
is systematically deduced from the three-dimensional fundamental equations of thermoelasticity in Section
5. Some of the special cases involving material properties, kinematics and geometry are taken up in Section
6. Besides, a theorem of uniqueness is devised so as to enumerate the boundary and initial conditions
sufficient for the uniqueness in solutions of a hierarchic system of fully linearized equations of thermoelastic
shell. Some concluding remarks are drawn in the last section.

1.1. Notation

Yearning for its versatility to the differential geometry of a surface, familiar tensor notation is freely used
in a three-dimensional Euclidean space = (Ericksen, 1960). Accordingly, Einstein’s summation convention
is implied for all repeated Latin indices with the range 1, 2, 3 and Greek indices with the range 1, 2, unless
the indices (subscripts or superscripts) are enclosed within parentheses. In a fixed, right-handed system of
geodesic normal coordinates 0 (Synge and Schild, 1949) of the space =, Latin indices are assigned to space
tensors and Greek indices to surface tensors. A superposed dot stands for time differentiation and a comma
for partial differentiation with respect to the indicated space coordinate, and also, a semicolon and a colon
for covariant differentiation with respect to the space coordinates, using the space and surface metrics,
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respectively. Further, an asterisk is used to denote the prescribed quantities and an overbar to indicate the
field quantities referred to the base vectors of a reference surface A. In the space =, a finite and bounded,
regular region (Kellogg, 1946) is indicated by Q(¢) with its boundary surface 0 and closure Q(= Q U 0Q) at
time ¢. The Cartesian product of the region  and the time interval T = [f, #;), where #; > ¢, may be infinity,
is denoted by QXT, the thickness interval by Z = [—#,#] in which 24 is the thickness of shell and the
functions with derivatives of order up to and including (m) and (n) with respect to the space coordinates
and time by C,,.

2. Fundamental equations of thermoelasticity in differential and variational forms

In the 0 system of geodesic normal coordinates, consider a finite and bounded, regular thermoelastic
region of space Q + 0Q with its boundary surface 0Q2 and closure Q(= Q U Q) at time ¢ = £,. The com-
plementary regular subsurfaces of thermoelastic region are indicated by (0€Q,,0€2;) and (0Qy, 0Q,), that is,
0Q, U080, =002, U0Q, =02 and 02, N0Q, = 02y N 3R, = ¢. The unit outward vector normal to the
boundary surface is denoted by n;. The domain of definitions for the mechanical and thermal fields is
represented by QXT where T is the time interval [ty, ;). The motions of thermoelastic region are governed
by the well-established fundamental equations of thermoelasticity in differential form (Boley and Weiner,
1960). The fundamental equations may be grouped as the divergence, gradient and constitutive equations
and the boundary and initial conditions to supplement them. For completeness and ease of reference, the
fundamental equations of thermoelasticity with second sound (Tamma and Namburu, 1997) are summa-
rized below for a non-polar, non-local and non-relativistic elastic medium with temperature-dependent
material properties.

Divergence equations (the stress equations of motion and the equation of heat conduction)

Ll =tl+pf/ —pa =0 in QXT, (1a)
S[jkt/k =0 1in EXT, (1b)
Li=h,+p/+60¢=0 in QXT (2)

with the definitions

1 symmetric components of the stress tensor

0 mass density

fi components of the body force vector

u',a’  components of the displacement vector and acceleration vector (= i)

Eijk components of the alternating tensor

and

h components of the heat flux vector

7/ heat source unit mass

O, constant, positive, reference temperature; temperature of natural state of zero stress and strain
n entropy density

Gradient equations (the strain—displacement relations and the thermal field-temperature increment re-
lations)

LZI =€ — %(u,‘j + l/lj:[) =0 in ﬁ){]’v7 (3)
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L'=—(e;+60,)=0 in QXT, 4)

with the definitions

ejj components of the linear strain tensor
e; components of the thermal field vector
] temperature increment from the reference temperature 0, @ < @,

Constitutive relations (for the components of stress tensor, heat flux and the entropy density)

- - 1/0G 0G .=
Lio=¢—— (242} =0 in QXT
. 2 (aei/’ aeﬁ) " G)
and
L=+ 9 _ 0 inaxr, (6)
aei
oG .=
Ltc—n+%—0 in QXT. (7)

Here, the thermoelastic potential G is expressed in terms of the free energy function B and the dissipation
function F (Mindlin, 1974), namely

G(em e, @) = B(e,” @) — F(e,-). (8)
A quadratic form of the thermoelastic potential is defined by

B = %(Cijkleijek] — pC‘@(;l@z) - /lije,-j@, (9)

F =1kTee; — fle;;  p =o' (10)
By use of Egs. (7)—(9), the linear versions of constitutive relations are given in the form

Li{lcl = tij - (Cijklek[ - /Iij@) = 0 (11)
and

Lig=h — (Ke; — toh') = 0, (12)

L =1 — (20 + Me;) = 0. (13)

In the above equations, ¢”/¥ stands for the second order elastic constants measured at constant field and
temperature, A” for the thermal stress constants relating an increase in temperature to a stress at constant
strain or field, k7 for the positive-semidefinite conductivity tensor, « = pC,0," for the linear thermal
expansion coefficient, pC, for the specific heat per unit volume and 7, for a relaxation parameter (non-
negative constant). The relaxation parameter physically signifies the initiation of heat flow after a tem-
perature gradient is imposed. Thus, the anomaly of infinite speed of heat propagation is abrogated.
Moreover, the usual symmetry relations of the form

ikl _ ikl ij, p- iji7 ki — i (14)

C =cC

is recorded. In the ('-system of geodesic normal coordinates where g = 0 and g** = 1, the constitutive
relations (4) take the form,
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Lyﬁ = l‘(xﬁ ( oz/f&veév + C“ﬁ33€33 — )vocﬂ@) = 0,

mc

L2 =1 — (Pep — 1P0) =0, (15)

mc

Lfsc _ t33 _ (6‘33&/{6@‘[; + 633336‘33 _ )»33@) -0

for an anisotropic medium having elastic symmetry with respect to the surface 0° = constant (Green and
Zerna, 1954), that is,

cmﬁv.’a — cv3otﬁ _ Co{333 — C330(3 =0. (16)

For an isotropic medium, the material constants (14) take the form,
l/kl )gt/g kl 4 'u(glkgj/ +gl[gjk) )Ij — O(g kij — kgij (17)

in which A and u indicate Lame’s constants, k is the thermal conductivity and g are the components of
metric tensor. In accordance with Eq. (17), the constitutive relations become much simpler and the number
of material constants are finally reduced to 5(4, u, o, 79, k) from Eq. (35).

Whenever a thermal field exists, the elasticities of material are essentially dependent on temperature
(Miskioglu et al., 1981; Noda, 1991) and their dependency which largely changes with increasing tem-
perature is reported (e.g., Japan Society of Mechanical Engineers, 1980). Of the elasticities of material, the
density, Lamé’s constants and the thermal conductivity usually decrease, while the coefficient of thermal
expansion increases, with rising temperature. The temperature dependence of material properties is ex-
pressed as functions of a trinomial form of temperature increment (Pich, 1981), namely

N=2

(27 ko) = ) (e, 7). k) 0,)@" i QXT "

n n’ n’
n=0

and the rest of material properties are taken to be constant. Due to the variation of thermal conductivity
(18), the equation of heat conduction (2) becomes non-linear as discussed by Carslaw and Jaeger (1959).
Nevertheless, this is almost always overlooked in the literature and the equation of heat conduction is
assumed, to a reasonable approximation, to be linear. By use of Eq. (18) with the linear temperature de-
pendence of isotropic materials, N =1, only a few studies were reported on the thermally induced vibrations
of elastic plates (Tomar and Gupta, 1984; Adeniji-Fashola and Oyediran, 1988; Altay and Dokmeci, 1997).
However, the thermally induced vibrations of shells having temperature-dependent material are in need of
further investigations.

Fundamental differential equations. The aforementioned equations (1a,b)—(7) comprise the 23 equations
of the thermoelasticity with second sound governing the 23 dependent variables (u,-, e 1 e m, @) which
are the functions of space coordinates and time. The uniqueness in solutions of the initial-mixed boundary
value problems defined by the fundamental equations (la,b)—(7) was examined (Dhaliwal and Sherief,
1980). Thus, a set of initial and boundary conditions sufficient for the uniqueness is stated as follows:

Boundary and initial conditions

L =t —nt'"=0 ondQXT, (19)

L™ =u —u;=0 in 0QXT (20)
and

Ly =h.—nh'=0 on 0QXT, (21)

=—(0—-06,)=0 on 0QyXT, (22)
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where
t components of the traction vector (= n;t)
normal components of the heat flux vector across the boundary surface (= n;4’) and the initial
conditions of the form,
L =ui(07,10) — o (607) =0 in Q(ty) (23)
L =u;(07,10) — B;(6') =0 in Q(t) (24)
and
L*ot = @(Hi, t()) — Vs (01) =0 in Q([()) (25)

where o, f* and y, are prescribed functions.
2.1. Hamilton’s principle

Now, the aforementioned fundamental equations of thermoelasticity with second sound in differential
form are expressed in variational form, as the Euler—Lagrange equations of a unified variational prin-
ciple. To establish the unified variational principle, Hamilton’s principle which is a powerful and elegant
tool used successfully in continuum physics is used as a starting point for the thermoelastic medium.
Hamilton (1834, 1835) principle is originally deduced from D’Alembert’s principle by means of an in-
tegration over time for a discrete mechanical system and later it is extended by Kirchhoff (1876) for a
continuous medium. The application of Hamilton’s principle to a finite domain of medium always leads
to a variational principle, either an integral type for the case when the non-conservative forces are absent
or a differential type (Tabarrok and Rimrott, 1994), that generates only the divergence equations and the
associated boundary conditions of medium. In such a variational principle, the variations of each of
the field variables are independent (unconstrained) within the domain and are constrained to vanish at
the time #, and ¢ throughout the domain and its boundary. Hamilton’s principle (Goldstein, 1965) is
extensively used in solid and fluid mechanics, thermodynamics and electroelasticity (see Kotowski (1992)
and Dokmeci (1988) and references cited therein). By applying this principle and modifying it through
the dislocation potentials and Lagrange undetermined multipliers, a unified variational principle is re-
corded whose the Euler-Lagrange equations are shown to be the fundamental equations of thermo-
elasticity.

A generalized version of Hamilton’s principle is proposed for the thermoelastic region, namely

OLu{A} = OLm{ Am} + 0L A} =0 (26)

with the denotations of the form,

Om{Am} = S/Lfmdt+ /5* Wadt,  Am = {u}, (27)
T T
SL A} = B/Lgdht /S*VKdt, A= {0} (28)
T T
where
L = / (K — B)dV, I}, = / o/ u;dV, Wy = [ £6u,dS, (29)
Q Q oQ
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L :/(F—B)dV, szz/{(p/—n)@—n@o(;)}dV, sW = | hseds (30)
Q Q 00

and the kinetic energy density K as
K =Lpitu;. (31)

Here, subscripts (m) and (t) indicate the quantities which belong to the mechanical and thermal parts of
Hamilton’s principle. The mechanical part of Hamilton’s principle is well-known (e.g., Dokmeci, 1988) and
hence the thermal part of Hamilton’s principle is now considered. Taking pertinent variations in the
thermal part, Eq. (26) and then leaving out the variation of mass, namely 6(pd/) = 0 due to the axiom of
conservation of mass, making use of the interchangeable nature of variation and differentiation or inte-
gration and integrating by parts with respect to time, one readily arrives at the variational equation of the
form,

OB oF
L AN} = /dt/{[— <@+n> + (p/+ﬁ@0):| 5@+$86i}dV—&—/dt/a h.060dS
T Q i T Q

- /17@06@ ar. (32)
Q
T

Recalling the constitutive relations (5)—(9) and imposing the condition that all the variations of temperature
increment vanish at ¢ = #, and ¢ = ¢, namely

30 =0 at Q(t) and Q(4) (33)
in Eq. (31) and then substituting Eq. (4), one reads
L {O} = /dz/ [(p/ +170)30 — h’B@J}dV + /dt/ h,80dS. (34)
T Q T oQ
By use of the divergence theorem for the regular thermoelastic region Q + 0€Q, this equation takes the form
SL{O} = /dt/ (i + pf +7100)50dV + /dr/ (h, — nh)50dS. (35)
T Q T 0Q

Due to the arbitrary and independent volumetric and surface variations of the admissible state A, = {O},
this equation generates the equation of heat conduction and the natural boundary conditions of heat fluxes,
as its Euler-Lagrange equations.

2.2. Unified variational principle

The one-field variational principle which recovers the one deduced from the principle of virtual work
(Altay and Dokmeci, 1996) is subjected to condition (33) and the remaining equations of thermoelastic
medium, that is, Egs. (4), (6), (7), (22) and (25), as its constraints. This Hamiltonian type variational
principle can be readily used to obtain approximate direct solutions to the initial-boundary value problems
of thermoelasticity provided that the admissible state satisfies the constraint conditions. On the other hand,
in many cases, it is desirable for the approximate (trial or coordinate) functions to satisfy as few constraint
conditions as possible, in other cases, it is imperative that the approximating functions do not satisfy some
of the constraint conditions. In fact, veering a variational principle with constraints into ones without that
is a classical one and a variety of methods is available in removing the constraint conditions (Finlayson and
Scriven, 1967). Of the methods to remove constraint conditions, the dislocation potentials and Lagrange
undetermined multipliers are used in deriving a variational principle without constraints in thermoelasticity
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(Altay and Dokmeci, 1996). In a similar manner, a slightly generalized version of this variational principle
may be readily formulated so as to incorporate the effect of second sound by extending the variational
principle (35) together with the mechanical part of Hamilton’s principle (27). The resulting differential
variational principle is recorded, to render the paper self-contained, as an assertion of the form,

SL{ AmUAT } = 0Lm{Am} + 0Lr{A1} =0, (36)

where

dLm{Am} = /dt/ (Lﬁn8u,« —&—L;?Srif —&—Lﬁ{'chei,«)dV + /dt/ Lim8uidS+ /dt/ Lfmn,-St"de, (37)
r Ja ' r Joq T Joq, '

OLr{Nr}= /dt/ (L{S@ + LISh + L), de; +L,6811)dV+ /dt/ L;50dS (38)
T Q T 0Q
and the admissible states of the form,
AMm = {ui € Cp,e; € Coo, 17 € C10}7 (39)
/\T:{@6Cll,e,-€C10,hi€C11,11€C10} (40)

in terms of the denotations (1)—(7) and (19)—(22).

Unified variational principle

Let Q+0Q be a regular, finite and bounded thermoelastic region with its boundary surface
0Q(= 0Q, U 0,002, N0RQ, = ¢) and closure Q in the Euclidean space =. Then, of all the admissible states
A(= Am U Ar) which satisfy the initial conditions (23)—(25) and the symmetry of stress tensor (1b) as well as
the usual existence, continuity and differentiability conditions of field variables, if and only if, that ad-
missible state which satisfies the divergence equations (la) and (2), the gradient equations (3) and (4), the
constitutive relations (5)—(7) and the natural boundary conditions (19)—(21) is determined by the seven field
variational principle of the form,

SL{A} = 0,A = Ay U At (41)

as it Euler-Lagrange equations. Conversely, if the equations are identically satisfied, the seven field vari-
ational principle is met, and thus it is verified.

3. Geometry and kinematics of shell
3.1. Geometry

With reference to the 0 system of geodesic normal coordinates of the Euclidean space Z, the region of
thermoelastic shell ¥ + S called the shell space with its boundary surface S and closure V(= V U S) is taken
to be bounded by the lateral surface S, the lower face Sir and the upper face S,¢. The lateral or edge surface
Se(= SN S, Se = Sur USy) is a right cylindrical surface with generators perpendicular to the midsurface
(reference surface) 4 of thermoelastic shell, and it intersects the reference surface along a Jordan curve C.
An outward unit vector normal to the edge surface is denoted by v; and that to the faces is designated by #;.
The 0* curves are situated on the reference surface and the 0° axis is chosen positively upward, that is,
0° = 0 stands for the reference surface and 0° = % and 0° = —# for the upper and lower faces, respectively
(Fig. 1). Mathematically, the regular, finite and bounded region of thermoelastic shell is defined by

= |0°]/|Ruin] < 1. (42)
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Fig. 1. An element of shell showing the reference surface 4(6° = 0) and upper and lower faces, Sy (6° = /) and S (0° = —4).

Here, 2/ is the uniform thickness of shell and R,,;, denotes the least principal radius of curvature of the
reference surface 4. This fundamental assumption allows to treat the shell region as a two-dimensional
medium, and also, it is a sufficient restriction in order to ensure the existence of the shell tensor or shifters
(Naghdi, 1963).

3.2. Preliminaries

Certain selected results which are intended merely to faciliate the development in the next sections are
recorded from the differential geometry of a surface, a more elaborate account of which may be found in
the treatises by Naghdi (1972) and Librescu (1975). To begin with, the components of metric tensor are
given by

Zgy o —1\% —1\B v o
Qop = Wiy, 83 =0, gn=1; g0 = (u')(w"),e”, g°=0, g°=1 (43a)
for the shell space and those by
ot =g"(0",0), a3=0, an=1; o =g"0"0), «*=0, «* =1 (43b)

for the reference surface. In these equations, the components of shell tensor xj and those of its inverse
which act as shifters between space and surface tensors are defined by

W= 05— 0y, w(n'), =9 (44)
and the associated relationships are given by
s =—pu(u )bl ()= 05+ 000G —bloy),  p=l gl (45)

In the above equations, o,p, b,s and c, (: b;bvﬁ) denote, respectively, the first, second and third funda-
mental forms of the reference surface 4 and its mean and Gaussian curvatures are given by,

K = 157, K, =| b} | (46)
and hence Eq. (49) is expressed by

p=1-20Kn + (6°)K,. (47)
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By use of the shifters, the components of a vector field, (5, ;) and (', 7;), which are referred to the base
vectors of shell space V" and those of reference surface A4, respectively, are associated with one another in the
form,

B

_ _ _ _ _1I\PB . _ _
L= =W, 7 =W ) =t C=n=n=7 (48)

Furthermore, the relationships of the form,
Top = 1 os — bgZ’)s Xy = (07') 2T = bj7°),
T3 = Hﬁma T3 = A3q T+ bﬁf%/;,

) i B B (49)
= ()7 1 =1+ byl
/sz =33 = X33 = A33 = 7?3
for the vector field and the identities of the form,
) % ) v —1\Fy . v,,3
wi iy = (7). — iy (") 050 — by,
i = (™)., + mibyr” = (") b, (50a)
W = (1)
and
iy = ()., — w(u") bl (50b)

for a tensor field y” are recorded. Here and henceforth, colons are used to denote covariant differentiation
with respect to the indicated space coordinate by use of surface metrics and semicolons that by use of space
metrics, and overbars indicate the quantities which are referred to the base vectors of reference surface.
Besides, in the shell space V' + S, the volume elements d}” and the surface element dS on the faces and the
area element dA4 on the reference surface are given by,

dv = /gd0'd0*d0’ = dSd0® = pd4d0’,  d4 = /ad0'de?, o = [a (51a)
and the element of line dc by
n,dS = uvadcd93 (51b)

along the Jordan curve C.

3.3. Method of reduction

In analyzing the physical response of shells, the two-dimensional equations are almost always deduced
from the three-dimensional fundamental equations of continuum by means of a method of reduction.
Among the methods of reduction such as the direct method, the asymptotic method and Mindlin’s method
of reduction (see Mindlin (1968, 1989); Reddy and Robins (1994) and Noor (1994) for a review; also see
Genevey (1997)), the latter is used herein in systematically deriving the hierarchic system of two-dimen-
sional equations for the motions of a thermoelastic shell. Mindlin’s method of reduction is entirely reliant
on a variational averaging procedure together with an initially selected kinematic hypothesis. The selection
of kinematic hypothesis is evidently due to the fact that the differentiation operation is usually simpler than
the integration operation in deriving the lower-order equations of structures. The method is of wide use in
establishing one- and two-dimensional equations of structures (see Mindlin (1968, 1989) and Dokmeci
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(1994) for a review of the subject), and it allows to incorporate all the significant effects except the influence
of the shell parameter Eq. (42).

3.4. Kinematics

In the shell space V + S, all the field variables together with their derivatives are taken to be exist, single-
valued and piecewise continuous functions of the space coordinates ¢ and time ¢ under the suitable reg-
ularity and smoothness assumptions for the region as well as the thermo-mechanical loadings of shell.
Then, in accordance with the fundamental assumption Eq. (42), the shifted components of displacements,
that is, those referred to the base vectors of reference surface, are represented by

B0 = S (P) (070 (52

Here, from the mathematical point of view, a separation of variables solution is sought for the three-
dimensional fundamental equations of continuum. Thus, the vector functions ul(-") are unknown a priori and
independent functions of the displacement components of order (1) to be determined, and they are assumed
to exist and to be a function of class C,,. The coordinate (shape) functions «, can be chosen to be any type
of functions which should be complete, and they are taken, due to Weierstrass’s theorem, in the form,

7, = (0°)". (53)

The series expansions (52) and (53) of displacement components have sufficient kinematic freedom to in-
corporate as many higher order mechanical and thermal effects as deemed desirable in any case under
consideration. Besides, N denotes the order of approximation in the series expansions and N =1 is the
closest to the kinematics used in Love’s first and second approximations in the classical theory of elastic
shells (Naghdi, 1972).

It follows from the derivatives of displacement components (52) and (53) that all the field variables and,
for instance, the strain components may be similarly expressed by a power series expansions of the
thickness coordinate, namely

ey = Nf(m)”eﬁﬁ(ea f). (54)

n=0

To obtain explicitly the variational strain components, consider the mechanical part of gradient equations
in Eq. (41) as follows:

Sy {17} = / dr / d4 / L73 udo’. (55)
T A zZ
This variational equation can be expressed by

. 1
BLm{tU} = /Tdt/AdA/Z {ea/} — 5 [,u;(ﬁ‘,:ﬂ — bvﬁﬁj,) + ,U;;(E\w — bwﬂ3)}}6t1ﬁﬂd03
1
+ /dl/dA/ {2 [613 ) (,ufﬂ/;g + U3, + bfﬁﬁ)] o + (e3; — 53,3)5t33}ud03 (56)
T A zZ

in terms of the shifted components (48) of displacement vector. Inserting Eqs. (52) and (53) into Eq. (56)
and carrying out the integrations across the thickness of shell, one finally arrives at the variational equation
of the form,
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SLn{T}))} = /Tdt/z eff) — E)8T) d4. (57)
Here, the strain components of order (n) are defined by
i’,? = —[( g+ u}fl 2bcdgu2 ) (b; ‘”/j Dy b[;u — 2(:9(/;u(3”71>)}7

EY = [(n+ DD 4 — (n — 1)bguﬁ"} in AXT, (58)

iS|

EY) = (n+ Luy™.

Also, in Eq. (57), the stress resultants of order (n) are introduced by

T(z/) — tl/ — 2K th +Ktn+2>, (59a)
where
i i ij 3\ 13
(4 70) = [P0 (@) ar (59b)

Evidently, the strain components of order (n) and the stress resultants of order (n) are functions of the aerial
coordinates (0") and time (¢), only.

3.5. Distributions of the thermal field

To be consistent with the series expansions of displacement components Eqgs. (52) and (53), the tem-
perature increment of a generic point in the shell space is expressed by

M=
o, 1) => (0°) 001 (60)
n=0
and from the derivatives of this equation, the thermal field vector is given by
M
ei(0V,0) = (0°)"e" (0" 1) (61)
n=0

in terms of the thickness coordinate. As in the above, substituting Egs. (60) and (61) into the thermal part of
gradient equations in Eq. (41), namely,

SL{h'} = / dr / d4 / Lidh pd6® (62)
T A 4

and performing the integration across the thickness, one finds the distributions of the thermal field in
variational form as follows:

SLu{H|,} = / dr / E" — e )3H|, dA. (63)
Here, the components of thermal field of order (n) by
EW = -0 E" = —(n+1)0""  in AXT (64)

and the heat flux resultants of order (n) by
H{, = h{,) — 2K, 1) + K, 5, (65a)



G.A. Altay, M.C. Dokmeci | International Journal of Solids and Structures 38 (2001) 2737-2768 2751

where
(H HL) = / (1, ) (0°)"d6° (65b)
zZ

are introduced as the functions of aerial coordinates and time, only.

4. Constitutive equations of thermoelastic shell

With the stress and heat flux resultants which are surface tensors of the functions of aerial coordinates 6*
and time 7, attention is now confined to the constitutive relations of thermoelastic shell. The constitutive
relations are derived by means of the variational principle (41), though they may be obtained by use of the
principle of virtual work or by an energy expression, or via the direct integration of local constitutive
relations. For a non-linear elastic material, an anisotropic material and a temperature-dependent material
of the thermoelastic shell, the macroscopic constitutive equations are recorded below.

4.1. Non-linear constitutive relations

Preparatory to the derivation of macroscopic constitutive equations, recall the constitutive mechanical
part of the variational principle (41) together with Egs. (5) and (8), as follows:

SLme{ey} = /dt/dA/{’/——(Sijt%)]éewdm. (66)

Introducing Eq. (54) into this variational equation and then performing the integrations across the
thickness and keeping in mind the symmetry of stress tensor and the stress resultants (59), one has

ij ij (n)
SLc{e / dr /A 2;,(% 7 )selda, (67)
where
. 1 0% 0A
7 :_<_+_>. (@)
(n)e (n) (n)
2 ae,.j Geﬁ

Here, recalling the piecewise continuity of the single-valued field quantities, the thermoelastic potential #
per unit area of the reference surface 4 of the form

RB = /Z Bud®? (69)

is defined.
Likewise, the constitutive thermal part of the variational principle (41) is written as

6L1C{e,,@}_/dt/dA/{<h’—)66, <n+§@>8n],ud03 (70)

where Egs. (6)—(8) are considered. Inserting Egs. (60) and (61) into Eq. (70) and carrying out the inte-
grations across the thickness, one obtains

M
SLtC{eEn)v @(n)} = /Tdt/AZ[(H(I") - H([n)c)Sez(n) + (N(n) - N(n)c)Srl(n)]dAa (71)
n=0
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where

07 0%

N(n>c = (72)

H —
a@(,,)

(n)e — ae§”> ’

and the dissipation function % per unit area of the reference surface in the form
F = / Fud® (73)
zZ

is defined. Besides, the entropy density of the form

M

n= 2(93)’1’1(,1)(9“#) (74)

n=0

and the resultants of entropy density by

N = /Z n(6°)" ndo? (75)
are introduced in accordance with the resultants of stress and heat flux (59) and (65).
4.2. Linear constitutive equations

Making use of the quadratic versions of the thermoelastic potential (9) and (10), the linear counterparts
of the constitutive equations of thermoelastic shell (68), (72) and (75) are found to be

N
ij ijkl (m) ij

T(rjt)c = Z(C(,’Hn)ekz - Q(/m+n)@(”‘)) (76)

m=0
and

H,, = ZOK;;H)ej — 1M, (77)
S i (m)

Npye = Z(A<m+n>@<m> + Qi€ ) (78)
m=0

Here, the elastic stiffenesses of thermoelastic shell of the form
ijkl - p-ij ij _ ijkl 74 9ij 3\” 3
(cin k) @y Aw) _/Z(cf K3 ) (67)" udo (79)

are given. If attention is restricted to a shell material whose mechanical properties are homogeneous in the
thickness coordinate, the elastic stiffenesses may be expressed by

ijkl ij ij iil i aij
(C(j") ’K({I)’ Q(/’l)’A(”)) = (cjkl’ kj’ AJ’ a):u(n)7 (80)
where the shell tensor of order (n), namely
o = [ w000 1)
zZ

then with the aid of Eq. (47),
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tny = Loy — 2Kl (1) + Kel(n2) (82)
with the denotations by

Iy = / (0*)"de’,
V4

/|
]n: =&y [n: =0
(n=2p) (n T 1) (n=2p+1)

is defined.

4.3. Temperature-dependent materials

In view of the temperature dependency of material (18), the constitutive equations of thermoelastic shell
are obtained by the use of Egs. (54), (60) and (61) and (80)—(82) in Eqgs. (76)—(78) as follows:

N N
ij ijkl (m) 4ij
T(i)c = Z{H(ern) (COI € — /“Oj@(m)) + ZO:

ijkl (m) ij
Kontp+n) (Clj € — ’llj@<m))@(p>

m=0

N
ijkl (m) ij
+ D _Himiprain (Clz’ e’ — 24 @<m>)@<p>@<q> } (84)
q=0
and
i N ij (m) = ij (m) . ij (m) ri
H(ln)c = Z #()n+n)k(l)jej + Z :u(m+p+n)kijej @(ﬁ) + Z:"L(m+p+q+n)kl2]ej @(p)@(q) - TOH(ln)a
m=0 p=0 q=0

- (fxl O + ilijeff)) Oy (85)

}

M N
_ aij (m)
Niwe = Z{mmm (Ofo@w) + Ageij ) +y

p=0

N

+ Zﬂ(m+p+q+n) (“2@(’") + /Vz/@f}n)) 00Oy

q=0

in terms of Egs. (65), (69) and (75).

5. Thermoelastic shell equations

This section deals with the main topic of the paper, that is, a consistent and systematic derivation of the
remaining equations of thermoelastic shell. The derivation rests entirely on (i) the fields of displacements
and temperature increment chosen a priori, (ii) representing the two fields by the power series expansions in
the thickness coordinate and (iii) employing an averaging procedure of variational type. The first of which
is an important choice of the basic independent variables and makes the derivation comprehensive and
tractable as already noted in the previous section. The second is almost compulsory in order to account
satisfactorily for the high-frequency vibrations of thermoelastic shell. The averaging procedure is tacitly an
implication of the fact that all the field variables are taken to be exist, continuous and not varied widely
across the shell thickness. In the derivation, stresses or strains (Chien, 1944a,b; Simmonds, 1984; Pie-
traszkiewicz, 1998) and heat fluxes or thermal field can be alternatively chosen for the mechanical and
thermal parts, respectively, as the basic variables. However, the choice of displacements and temperature
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increment represents a unification of the kinematics of classical shell and plate theories (Jemielita, 1990) and
hence it seems to be more convenient for the derivation.

5.1. Equations of motion

To begin with, consider the variational stress equations of motion in Eq. (41), namely

SLu{u;} = / dt / d4 / Ll Su;ud0’. (86)
T A V4
With the aid of relationships (1a) and relationships (49), this equation may be written as
S {70} = / dr / d4 / [(t{j,“ + 82 4 pf S, + (12 4+ 623 + pf?)ou; — p'—a"sm] ndo?. (87)
T J4 zL " ' '
in terms of the shifted components of displacements. Following the use of identities (50) and hence ex-

pressing the covariant differentiations with respect to the metric tensor o,; in lieu of the metric tensor g;;,
Eq. (87) may be put in the form,

SLmu{ﬁi} = ﬁthML{ {(u#:tﬁ"):ﬁ _ 'u'u‘” ('ufl)fb;;t‘ﬁ _ ,ubfft‘g + M(Mffﬁ% + p(foc _ﬁoc)’u:| Sﬁ“
[ (), bt — (B e+ p(f — )] s b (88)

Substituting Eq. (52) into this equation, recalling relations (45) and integrating with respect to the thickness
coordinate, one finally arrives at the variational equation of shell motion as

SLaufu"} = / dr / ZN;(V&) — pi,) ) oul” da (89)
with the denotations of the form,

Vo = (707 = 80T0), = 030 = (0 = B3100) + Sty + 2 () = B3 ). )
Vs = Tooa b T0h — e Ty = nT500) + S5, + PR

in terms of the stress resultants (59). Also, in this equation, the acceleration resultants are introduced by

A =3 rmil®, o1)
m=0
the body force resultants by
Fo- [y
the surface loads by
(P(in), Q’('n)) - M(ﬁf - 0%;:3/‘5;) (0°)" at 0° = (=4, 4), (93a)

and the effective surface loads by

Sty = Ol — Py (93b)
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5.2. Heat conduction equation

Analogously, and with the use of Eq. (2), the variational equation of heat conduction in Eq. (41), namely

5L O} = / dr / dA / (hf,, Yol + @m) 13040 (94)
T A VA
is evaluated to obtain
L0} = / de / [(uh‘“)m + (k) + pf + @Oﬂ 5040, (95)
T A "

where relationships (45) and (49) and indentities (50) are considered. Next, substitution of Eq. (60) into this
equation and then integration with respect to the thickness coordinate results in

N
SLu{O)} = /dt/ZV(n>5@<n>dA (96)
T pz —
with the denotations of the form
Vioy = Hyy., = nH, ) + pFiy + @iy + Hiy) (97)

in terms of the resultants of heat flux (65) and those of entropy density (75). In Eq. (97), the heat source
resultants are introduced by

Finy = / /(0°) ude’, (98)
VA
the thermal loads by
(Ews Gw) = w*(0°)" at 0 = (=4, 4) (99a)
and hence,
Hiy = Gy = E).- (99b)

5.3. Mechanical boundary conditions

The tractions are taken to be prescribed on the faces S¢(= Sir U Sy¢) and on some part C; of the edge
boundary surface S., while the displacements are given on the remaining part C, of the edge boundary
surface. Accordingly, the mechanical boundary conditions in Eq. (41) are expressed in the form

SL*m{u,-,tU} — /dl‘/ (ti _ n3t3i)6uids—‘r /dt/ dc/ (fiF — vitw)ﬂ&/l,‘d03
T St T G Z
+/dt/ dc/va(u[—uj‘)St“iud03, (100)
T u A

where C, and C, are the complementary parts of the Jordan curve C. By evaluating the surface integrals
with the aid of Eqgs. (48), (52) and (59), as before, one reads

6L*m ,n s Ly /dl/ )514 d4 +/dt/ (Pl (;;)SMI(n)dA
Suf n=0 Sit n=0
[ _ ol ") (”) o
+/Tdt/Can w7 o dc+/dt/c S (ul i ")orde,  (1on)

u n=0

where the denotations of the form
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off 1/5 o v
V(n) - —b Tn+l

and the traction resultants as follows:

Vi =10 (102)

(P Qi) = (e = 003006} at 0" = (= 4.4), (103a)
i i o si
Viy = Ty = 03T (103b)
where
i i (n3\" 3
Ti, = /Z £ (6°)"udo (103¢)
are defined.

5.4. Thermal boundary conditions

To prescribe the temperature increment is a difficult one to materialize physically and hence only the
boundary conditions involving with the heat fluxes are considered. Thus, the thermal boundary conditions
in Eq. (41) read

8L, {0} = /dt/ (4, — n343)6@ds+/dtf dc/(%* — v, ) udO do°. (104)
T Js T c z

Paralleling to the evaluation of Eq. (100) and using Eqgs. (60), (65a) and (75), this equation takes the form,

SL*,{@ (n) /dl/ 5@ dA + /dt/ Z E:n) +E(,1>)5@(,,)d14
Suf n=0 Si

If n=0

/ dtj{ > () =ty )30 de (105)

where
(59, 6) = . ()" at 0 = (1), e
H. ) = / u(0°)"4.d0° Hen
VA

are the heat flux resultants which are prescribed at the faces and on the edge boundary surface, respectively.
5.5. Hierarchical initial conditions

In view of Egs. (23)—(295), a set of initial conditions based on the series expansions of displacements (52)
and temperature increment (60) may be expressed by

" (0%, 10) — o (0°) =0, i (0%, 10) — B (0) =0 on A(to) (108)
and
O (0", t0) — 7(,(0") =0 on A(t), (109)

where af("), ﬁl’.‘<"> and Vin) stand for the series representations of the prescribed functions «;, f; and 7, in
terms of the thickness coordinate.
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5.6. Thermoelastic shell equations

Now, substituting Egs. (57), (67), (89) and (101) into the mechanical part, and Egs. (63), (71), (96) and
(105) into the thermal part, of the unified variational principle (41), one has the hierarchic system of two-
dimensional, approximate equations in variational form for the high-frequency, extensional, thickness-
shear, flexural and torsional as well as coupled motions of thermoelastic shell of uniform thickness in the
form,

SLY{ADY = SLEHAAL Y + LAY} =0, (110)
where
SL(S:I>{/\§~':)} = 0Ly {H(i,,)} + 5Lte{€§"), 1’](,1)} + 8Ly {O@p} + L. {0y} (111)

with the admissible states of the form

A = AP UAY,

m t

/\(?n) = {uz(‘n>7 ef'/r'l)v T;‘ﬁ'm}v /\(?r:) = (@(n); egn)7l_]i(n)’ 77(;1)) (1 12)
in terms of the displacement components (52), strain components (57) and stress resultants (59), of order 7,
and the temperature increment (60), thermal field components (61), heat flux resultants (65) and entropy
resultants (74), of order n. Setting the variational Eq. (110) equal to zero for the arbitrary and independent
variations of the admissible state (112), the hierarchic system of equations in differential form is expressed
by

e, —FE. = on ,

W_E =0 onAXT 113
T —Tg. =0 on AXT, (114)
Vi —pAj, =0 on AXT (115)

in terms of Eqgs. (58), (76) and (90), the boundary conditions by
ka(n) - Q](n) =0 on SquTa P,i(,,,) + P(in) =0 on S]fXT7
Vi = V& =0 on CXT, ul” —u;"" =0 on C,XT (116)

in terms of Eq. (103), the initial conditions (108), the series expansions of displacement components (52)
and the symmetry of stress tensor which is based on (1b), namely

gijkT(;f) =0 on AXT (117)

for the mechanical part, and

e —E" =0 on AXT (118)
Hi,y —H{, =0, Np—Npe=0 on AXT (119)
Viy =0 on AXT (120)

in terms of Egs. (64), (77), (78) and (97), the boundary conditions by
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G?n) — G(n) =0 on SueXT, E?n) — E(n) =0 on SieXT,

H" —v,H}) =0 on CXT (121)

*

in terms of Egs. (106) and (107), the initial conditions (109) and the series expansion of temperature in-
crement (60) for the thermal part, of thermoelastic shell.

6. Special cases: uniqueness of solutions

Thus far, a hierarchic system of two-dimensional, non-isothermal, approximate equations is consistently
derived in order to predict the high frequency motions of a thermoelastic shell having temperature-
dependent material. The hierarchic system of shear-deformable, thermoelastic shell equations is formulated
in invariant, both differential and variational forms, and hence it is reducible to any case of interest, involv-
ing special geometry, material, motions and alike. Some of special cases are recorded in this section and also,
a theorem of uniqueness is devised in solutions of the hierarchic system of fully linearized shell equations.

On shell geometry: Due to its invariant feature, the hierarchic system of two-dimensional equations can
be readily expressed in a particular system of coordinates most suitable to the geometrical configuration of
thermoelastic shell. Besides, in the case of a shallow shell, the shell tensor or the shifters may be appro-
priately expressed by

pp =6y, lupl=u=l, p) =y (122a)
in Egs. (45) and (82), and by
Xoc:ﬁ = zali - b“ﬁi3’ Xoc;3 = 2143’ A30 = 23,01 + baﬁyﬁ (122b)

in Eq. (49). In addition, in the absence of curvature effects, the shell tensor is simply reduced to the
Kronecker deltas and hence the hierarchic system of two-dimensional equations is given by the divergence
equations (89) and (96) together with the relations of the form,

i _ goi 3i i i
Vi = Topa = 1Ty + S0 + PFG),s
i n[3i(nr n3 3i(pr pn3
Sty = W' [EN(07,0° = 4,0) = £(07,0° = — 4,1)] (123)
the gradient equations (57) and (63) together with the relations of the form

Ei'/? = %(ui”}; + u;;"i), E[(x'? = %{(n + Dl ug"d , Ey = (n+ 1)14&"“) (124)
the constitutive relations (67) and (71), the boundary conditions (101) and (105) together with the relations
of the form

Vo) = Tos (Pim)aQi(n)) = #0070 = 4,0),L(0°,0" = — £,1)], (125)

the initial conditions (109) and the series expansions (52) and (60) for the high-frequency motions of
thermoelastic plate having temperature-dependent material.

On the kinematics: In deriving the hierarchic system of thermoelastic shell equations, the kinematic
assumptions (52) and (60), that is, the series expansions of displacement components and temperature
increment are chosen as a basis at the outset. By truncating the series expansions for N =2, one recovers the
classical equations of thermoelastic thin shells in the sense of Mindlin (1968) and also those of elastic shells
within the frame of Love’s first approximation [i.e., ul) = —(u) + bfu}’),ul") = 0,0, = 0] and Love’s
second approximation (z, = ﬂio) + 93u§(1),ﬁ3 = ugo) and ©(,) =0). Also, the aforementioned equations
of thermoelastic plate are agree with those given by Mindlin (1974) where the effect of second sound is



G.A. Altay, M.C. Dokmeci | International Journal of Solids and Structures 38 (2001) 2737-2768 2759

discarded but the piezoelectric effect is included, and, of course, with Lagrange’s or Mindlin’s equations of
elastic plates for the case when the high order mechanical terms for N > 2 and all the thermal terms are
abrogated, and also, with Mindlin’s plate equations for thermoelastic vibrations of temperature-dependent
materials (Altay and Dokmeci, 1997).

On the material: Various types of material specializations such as the isotropy of shell material or the
elastic symmetry of shell material with respect to the reference surface (Green and Zerna, 1954) can be
readily considered in the constitutive relations of thermoelastic shell with or without temperature-depen-
dency of material, that is, Egs. (84) and (85) or Egs. (76)—(78). By discarding the effect of second sound and
the temperature-dependency of material as well as all the terms involving with the temperature variations,
one recovers the isothermal equations of elastic shells reported by Dokmeci (1973, 1974) who considered
the effect of piezoelectricity and those developed by Yokoo and Matsunaga (1974), Librescu (1975, 1987)
and Brull and Librescu (1982) who took account of the effect of geometrical non-linearity as well. A
detailed study of special cases and certain cases with numerical applications will be reported later.

6.1. Uniqueness of solutions

Paralleling to the uniqueness theorems for the three-dimensional linear theory of elastostatics (Kirchhoff,
1859) and elastodynamics (Neumann, 1885) by the method of energy arguments, the uniqueness theorems
are devised in solutions of the two-dimensional, linear theory of non-polar and polar, elastic and ther-
moelastic shells and plates (Green and Naghdi, 1971; Naghdi and Trapp, 1972; Naghdi, 1972; Dokmeci,
1973, 1978, 1994; Rubin, 1986; Altay and Dokmeci, 1997) at the low-frequency motions. In an analogous
way to Neumann’s theorem in elastodynamics and Weiner’s theorem in thermoelastodynamics, the
uniqueness is examined in solutions of the high-frequency equations of piezoelectric and thermopiezo-
electric plates (Mindlin, 1968, 1974; Tiersten, 1969) and crystal surfaces (Dokmeci, 1974). Now, within the
frame of the coupled theory of thermoelasticity with second sound, a theorem of uniqueness is proved in
solutions of the initial, mixed boundary value problems characterized by the hierarchic system of linearized
equations of thermoelastic shell of uniform thickness.

Theorem . With reference to the 0'-system of geodesic normal coordinates in the Euclidean space Z, given a
regular region V + S of thermoelastic shell, with its boundary surface S(= S. U Syt U Sy), closure V(= V US)
and midsurface A. At the time interval T = [ty, t,), under a prescribed initial data, the region of thermoelastic
shell is set in motion and this motion is maintained by application of assigned surface traction and heat supply
and by application of prescribed velocity, displacements and temperature fields over appropriate portions of the
boundary surface S. Now, let

Ns = Ns, U Ag,

with

As,

m

= {ugn) c Clz,el(;) € Coo, Tg-n) c CIO},

Ns, = {@(,,) S Coo,e,(-") S Coo,H(in) S C]],N(n) S C()]} on AXT
be an admissible state of single-valued functions which satisfies the hierarchic linear system of two-dimensional
divergence equations (115) and (120), gradient equations (113) and (118), constitutive relations (114) and
(119), boundary conditions (116) and (121), initial conditions (108) and (109) and the symmetry of stress
resultants (117). Also, let the mass density p and the specific heat C, are positive everywhere on A and the
symmetry relations (14) hold. Then, there exists at most one admissible state (126) which satisfies the
aforementioned equations of thermoelastic shell.
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To prove the theorem of uniqueness, one follows the usual lines by considering two admissible states /\g‘”)

of the 23 N = M dependent variables (", ¢!, T"; @<n),e§”>,H,-<"),N(,,>), initially zero, identified by prime

L RRN

and double primes and their difference by

Ns = Ng — Ng (126a)
with

) =l i) = e — el

@(,,) :@En)f(’pl(,n),...,N(,,) :N(,n)fN(L’), n= 1,2,...,N (126b)

in which each state comprises a solution of the twenty-three N equations, that is, that of the hierarchic
system of non-isothermal linear equations of thermoelastic shell with no singularities of any type. In view of
the linearity of the hierarchic system of shell equations, the difference state Ay of Eq. (126a) is a solution as
well. Thus, one reads, in terms of the difference solution, the homogeneous divergence equations of the
form,

Is =15, + 15, =0, (127)

where the mechanical divergence equations of the form

b= [ [ = o+t )i ad (128)
n=0

in terms of Eq. (115) and the thermal divergence equations of the form

N
Is, = X;/A@EI(FW — Viw) Oy d4 (129)

in terms of Eq. (120) are employed.
Before proceeding further, the kinetic energy density is recalled by

K =Lpitu;, (130)
the purely mechanical energy density by

U = %c’:"kle,»jek,, (131)

the purely thermal energy by

T =10 (132)
and the second laws of thermodynamics (Fox, 1969; Naghdi and Trapp, 1972) by

O =he >0. (133)

In addition to Eq. (133), the energy densities (130)—(132) are positive-definite, by definition, and initially
zero due to the initial conditions (108) and (109); so that the quantities K, U, T and Q have the same
properties for the difference state (126). Thus, integrating Eqs. (130)—(132), one has the positive-definite
quantities of the form,

(Ks, Us, Ts) = / (K, U, T)dV (134)

Vv

and
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0. [ oar (135)
V

for the shell region.
Next, taking time differentiation of Eq. (130) and integrating over the volume of thermoelastic shell, one
readily obtains the rate of the kinetic energy (134) in the form,

Ks = /dA/pﬁfﬁ,-ud03, (136)
A zZ
in terms of the shifted components of displacements (48). Substituting Eq. (52) into this equation and then

performing the integration with respect to the thickness coordinate, one reads the rate of the kinetic energy
as

N
k=3 / pit " dd, (137)
n=0+4

in terms of the acceleration resultants (91). The shell tensor (81) is employed in the integration of Eq. (136).
In a similar manner, the rate of the purely mechanical energy (131) reads

Us = /dA/(tij+iij@)éi,ud93, (138)
A z

where the symmetry of stress tensor (1b), the constitutive relations (11) and the symmetry relations (14) are
considered. With the use of strain distributions (54) and (113) and the series of temperature increment (60),
the rate of energy (138) results in

Us = Us, + Us, (139)
with

N
: o B( - (n) . (n) y . (n—1) . (n—1) 33 - (n+1)
Us, = Z/A {T(i,) (ua:[)’ — bypity” — bjit,g  — Copily ) + (n+ )T iy

n=0
753 [ (04 Dyt + it = (n = 1)1k | }dd (140)
and
: - ij (n)
Us, = /Alfoné,f’dA 141
N HZ(; p (m€ij (141)

in terms of the stress resultants (59) and the temperature resultants of order (n) as

N
O = Y Himin)Om) (142)
m=0
Likewise, the rate of the purely thermal energy (132) is stated by
Ty = /dA/ac@@,udfP (143)
A A

which, after inserting Eq. (60) and integrating across the shell thickness and also taking Eq. (142) into
account, becomes
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N
TS = 2/4&0(")@(,,). (144)
n=0

Furthermore, from Eqgs. (133) and (135) and by the use of Egs. (61) and (64), analogously to Eq. (144), one
obtains

/ +(n+ DH, @n+1}dA>0 (145)
n=0

in terms of Eq. (65).
Now, by substituting Eq. (90) into Eq. (128), one reads

ﬁaz o t[f o 3 3a o 3 o - (n
= /{[ Ty = b "+') Sl G _bﬂT<n>+S<n>)]”§c)
(T8 + b = iy =T 4 83 ) = il bt (146)

After applying the divergence theorem, this equation may be expressed by

N
Bot o . o . n arpf3 . (n o
I, = Zo /A{_ (T(/ - biT, n+l )”< - ”T3 ) + (n — l)b/leé,)”i> - Tna)”gi

+ (bi/jT( ciﬁT”n[irl ) g”> + Sén)ul(n) - pAl(n)ufn> d4

+ fi v (0 = BTl )il + Tl | v de 3. (147)

By comparing Eqs. (137) and (140) with Eq. (147), one has

I, = —Ks — Us, + I (148)
where
N . .
Tm = ,,Zo: /ASEn)itl(")dA —i-j{vﬁV(f’)itl(-")udc (149)

in terms of denotations (102). Likewise, putting Eq. (97) into Eq. (129), one writes
Z/ —|—}1H ) —N<,1> — @alH(n):| @(,,)dA. (150)
By the divergence theorem and use of Egs. (78)—(80) this equation takes the form

't

N
I =3 /A{@SI(H%@ ], O~ Hin O ) = 201y O — 720l da
=0

n=!

—]{@alvaH&)@(,,),udc . (151)

This, comparing with Egs. (141), (144) and (145), gives the result of the form
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IS[ :—TS— L.]S1 _QS+Xt' (152)
In this equation,

N
Te = Z — @01</AH(,,)@(,,> dA4 +ﬁVaH&)@(n)MdC> (153)

n=0
is defined.
As a last step, assembling all the results of Eqgs. (148) and (152) in (127), the latter reads
Is=—Ks—Us —Ts = Os+ s + 2 = 0. (154)

In this equation, the last two terms (y,,, 7,) vanish due to the mechanical and thermal boundary con-
ditions (116) and (121) and the initial conditions (108) and (109). Also, the conditions sufficient to make the
two terms zero are: specification of one member of each of the (n)-products of displacement and face
traction components as well as heat flux and temperature increment at each point of the interior of the
thermoelastic shell, and also specification of one member of each of the (n)-products of edge-displacement
and edge-traction components as well as edge-temperature increment and edge-heat flux at each point of
the Jordan curve C of the thermoelastic shell. In view of these sufficient boundary and initial conditions and
condition (145), Eq. (154) is expressed by

Ks + Us+ Ty = —Q5 <0. (155)
Integration of this equation over the time interval 7 results in

Ks(t)) + Us(ty) + Ts(t1) < Ks(t) + Us(to) + Ts(to). (156)
By this result one finally has

Ks(t) = Ks(to) = Us(ty) = Us(to) = Ts(t1) = Ts(t) =0 (157)

due to the positive-definite properties of K, U and T mentioned above. Thus, one concludes that the dif-
ference set of solutions (126) is identically zero throughout the region of thermoelastic shell under the usual
continuity conditions, the symmetry of stress tensor (1b) and the positive-definiteness of material elasticities.

7. Conclusions

In relation to high-frequency vibrations of temperature-dependent elastic materials, a hierarchic system
of shear deformable shell equations was rigorously deduced from the three-dimensional fundamental
equations of thermoelasticity with second sound. First, Hamilton’s principle was stated for a thermoelastic
medium and then a unified, differential type of variational principles was proposed which leads to the
fundamental equations of thermoelasticity, as its Euler—Lagrange equations. Next, by use of the unified
variational principle together with a priori chosen fields of displacements and temperature increment, a
consistent reduction of the fundamental equations was accomplished to the approximate equations of
thermoelastic shell of uniform thickness under thermo-mechanical loading. All the mechanical and thermal
effects of higher orders as well as the quadratic temperature-dependency of elastic material with second
sound were taken into account as deemed desirable in any case under consideration. Due to its invariant
nature, the hierarchic system of equations can be readily expressible in any particular system of coordinates
most suitable to the geometry of a thermoelastic shell. By accounting for the coupling of mechanical and
thermal fields, the resulting equations accommodate the thickness, extensional, flexural and torsional as
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well as coupled motions of thermoelastic shell at both low- and high frequencies. Also, a theorem of
uniqueness is devised in solutions of the two-dimensional, initial-mixed boundary value problems defined
by the system of shell equations, and the boundary and initial conditions sufficient for the uniqueness of
solutions were enumerated as well.

The unified variational principle (41) which allows one to make simultaneous approximation upon all
the field variables provides a standard basis in directly generating various numerical solutions for the
thermo-mechanical analysis of an elastic medium. This differential type of variational principles is in
general agreement with the variational principles reviewed and also reported by Altay and Dokmeci (1996).
The hierarchic system of two-dimensional equations was shown to recover various types of shell and plate
equations provided the thermal effect with second sound or the temperature-dependency of material and/or
the effect of curvature were abrogated. By omitting the coupling effect in the constitutive relations, one
arrives at the hierarchic system of uncoupled equations, in which the mechanical and thermal responses of
shell can be separately treated. The resulting equations of thermoelastic shell can be further simplified by
introducing a variety of properties involving the geometrical configuration, kinematics and material
property of thermoelastic shell of uniform thickness.

Noteworthy is the fact that some assumptions involving stress or strain distributions across the shell
thickness together with the compatibility conditions may be taken as an alternative basis in lieu of the fields
of displacement and temperature increment in deriving the hierarchic system of shell equations. Besides,
Mindlin’s method of reduction can be readily replaced by the direct integration method of reduction
(Naghdi, 1972) or the asymptotic geometric optics method (Steele, 1965) so as to deduce the equations of
thermoelastic shell from the three-dimensional equations of thermoelasticity. Although, the hierarchic
system of equations which is exclusively formulated for the high-frequency vibrations of a thermoelastic
shell, it is rather straightforward to extend it to that of a shell with time-and/or temperature-dependent
types of materials (polar, porous, nonlocal and alike), with large strains (Basar and Ding, 1997; Altay and
Dokmeci, 2000), and with the inclusion of moisture (Doxsee, 1989) and piezoelectric effect (Dokmeci,
1974).

Evidently, the hierarchic system of two-dimensional equations of a thermoelastic shell is approximate
but more tractable for numerical computation than the system of three-dimensional fundamental equations
of thermoelasticity expressed for a shell. Both the systems of thermoelastic shell equations inherently
contain some errors of experimental nature due to the constitutive relations. The constitutive type of ex-
perimental errors cannot be reduced by simply increasing the accuracy of computation in solutions of the
system of two-or three-dimensional shell equations. In addition, both the systems of shell equations have
some inevitable errors in engineering applications, arising from the prescribed boundary and initial con-
ditions and the rate and type of loading as well as the method of numerical computation. Besides, the
hierarchic system of shell equations includes some kinematic errors depending on the order of truncation N
in Eq. (52) and also Eq. (60), and in particular, on the shell parameter (42). The relative merits of using the
two-dimensional system of thermoelastic shell equations in lieu of the three-dimensional ones depend
obviously on specific applications. Thus, it may be concluded that it is a necessity to carry out research
involving error estimates in solutions (John, 1965) of both the systems of two-and three-dimensional
equations of thermoelastic shell.

In closing, by the use of the hierarchic system of coupled dynamic thermoelastic shell equations, certain
applications, especially including the effect of hyperbolic heat conduction, which is beyond the scope of this
paper are the topics of follow-up papers. Besides, some extensions of the hierarchic system with special
emphasis on numerical algorithms based on the method of moments (Dokmeci, 1992) for a class of ap-
plications will be reported elsewhere. Lastly, the demonstrations of the existence of solutions, especially
with reference to the specifications of general boundary and initial conditions (Bernadou et al., 1994) and
the convergence properties of the hierarchical system of thermoelastic shell equations (Oliveira, 1974;
Antman, 1997) remain to be investigated as well.
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